Thinking about home energy storage

Richard Keech

Motivations for home energy storage

• Environmental / altruistic

```
"I don't want to buy polluting grid power" "I want to support clean tech" "It will be good for the grid"
```

Financial

```
"I don't want to buy expensive grid power" "It will save me money"
```

Remote / necessity

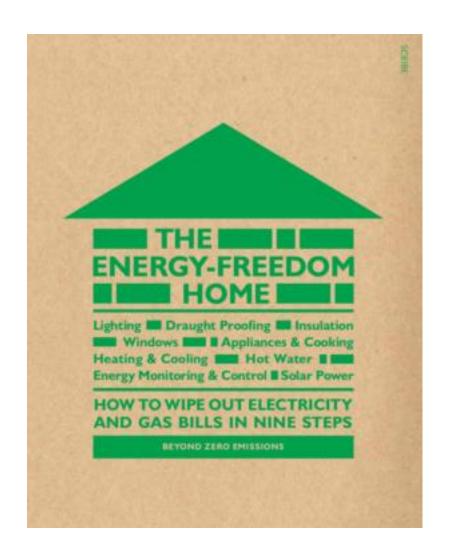
```
"Grid – what grid?"
```

Reliability / independence / control

```
"I don't trust the grid"
```

Bling / gadget

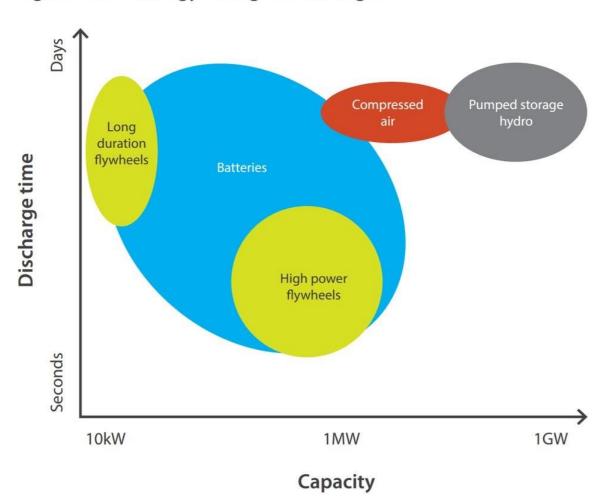
"Shiny Powerwall. Mmmm. Shiny."


Revenge

"!*#\$! the power company"

Context

- Priority #1: Reduce demand and disconnect from gas
- Priority #2: Generate your own energy
- (net-energy positive)
- Priority #3: Store your own energy
- *ie* get your house in order first


Terminology

- In front of the meter / behind the meter
- Cell
- State of charge
- Capacity (kWh)
- Power (kW)
- Charge / discharge
- Depth of discharge
- Cycles
- Round-trip efficiency
- Battery inverter
- Hybrid solar system
- Arbitrage

Energy storage technologies

Figure 8.1: Energy storage technologies⁴⁴³

Changing role of the grid

When a home becomes **net-energy positive**

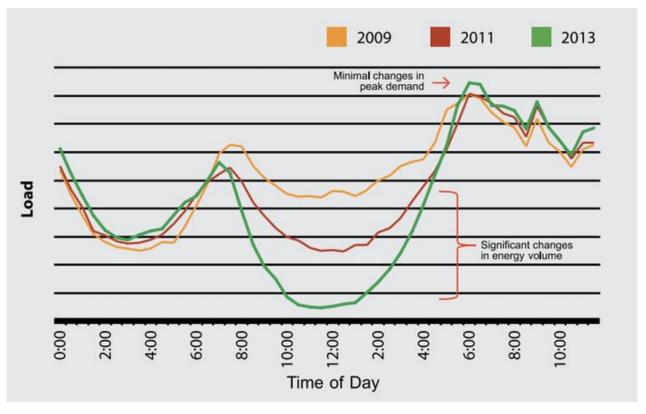
the role of the grid changes from an energy supply system

to an energy sharing system.

On-grid or off-grid?

- Opinion: Going off-grid in grid-connected areas is misguided
- Practical implications:
 - off-grid equals having capacity to cope with the worst-case winter week.
 - therefore 51/52 weeks of excess capacity...
 - with no way to sell your excess.
 - serious off-grid systems usually have an auto-start petrol generator.

On-grid or off-grid?


- Big-picture implications of off-grid homes:
 - fewer people supporting fixed costs of the grid
 - risk of a death spiral
 - equity issues
- The grid is a public good support it.

Batteries and the grid

The duck curve.

 Batteries can flatten the curve.

 The grid perhaps gains more from home batteries than do households?

Energy storage: Different things for different people

• for **grid**:

- Voltage and frequency stabilisation
- Wholesale price stabilisation

• for **commercial**:

Reduce peak demand (power, not energy)

• for **home**:

- Deferred solar consumption (energy, not power)
- Failsafe backup (maybe)

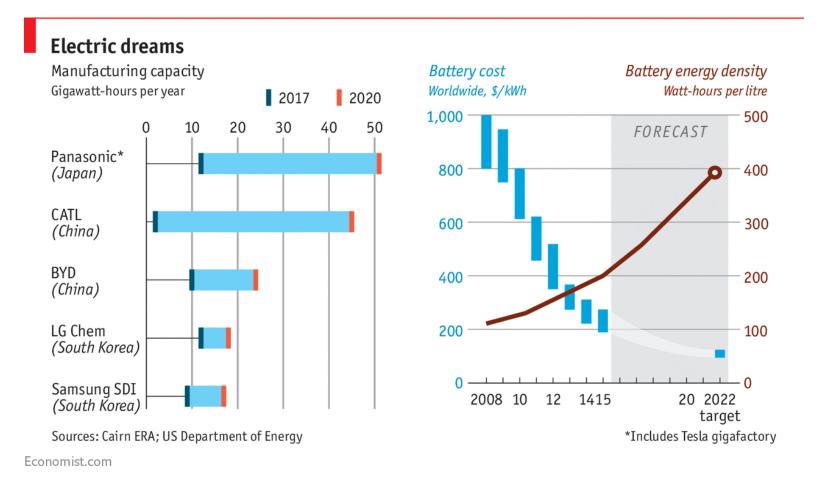
Cell technologies / chemistries

- Lead-acid
- Lithium-ion
- Flow batteries
- Aqueous
- Sodium Nickel
- others

Technology: Lead-acid batteries

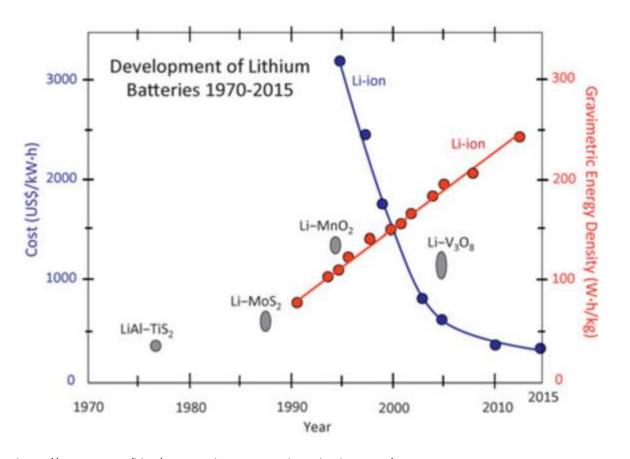
- Legacy tech (patented 1859)
- Typically seen as 12V, 24V, 48V
- Mature technology
- Very heavy (poor energy density)
- Emit H₂ gas during late part of charge cycle
- Doesn't like partial state of charge
 - Fussy charge cycle to avoid damaging cells
- Real usable capacity << nominal capacity
- Cycles: thousands
- Hybrid Lead-acid / capacitor (CSIRO, Ecoult)

Technology: Lithium Ion


- Great leap forward (c 1980)
- First commercial battery c 1991, Sony
- More expensive, cost reducing quickly
- A family of cell chemistries
 - Lithium Iron Phosphate (LiFePO₄ aka LFP)
 - Lithium Polymer
 - Lithium Nickel Magnesium Cobalt Oxide (aka NMC)
 - Lithium Titanate (aka LTO)
- High energy density
- Some Lithium cell chemistries are less stable, and flammable
- Mobile electronics, EVs
- More flexible charging profile, low 'memory'
- Many vendors, very large global investment
- Cycles: thousands tens of thousand
- Production economies of scale: enormous

AA cell vs 18650 Lithium cell ~12Wh energy, ~49g

Lithium Ion trends #1



Lithium Ion trends #2

• 1991: 3000 USD/kWh

• 2015: 400 USD/kWh

• 2019: 100 USD/kWh (est)

https://arena.gov.au/blog/arenas-role-commercialising-big-batteries/

Technology: Flow batteries

- Liquid electrolyte (pumped)
- Zinc-bromine solution
- Increase capacity by increasing reservoir size
- Full rated capacity available
- Redflow Australian tech
- Compact
- 10-year / 36.5MWh warranty

What's in a typical battery module

- Cells
- Charger
- Battery Management System (BMS)
- Battery inverter

Economics of energy storage

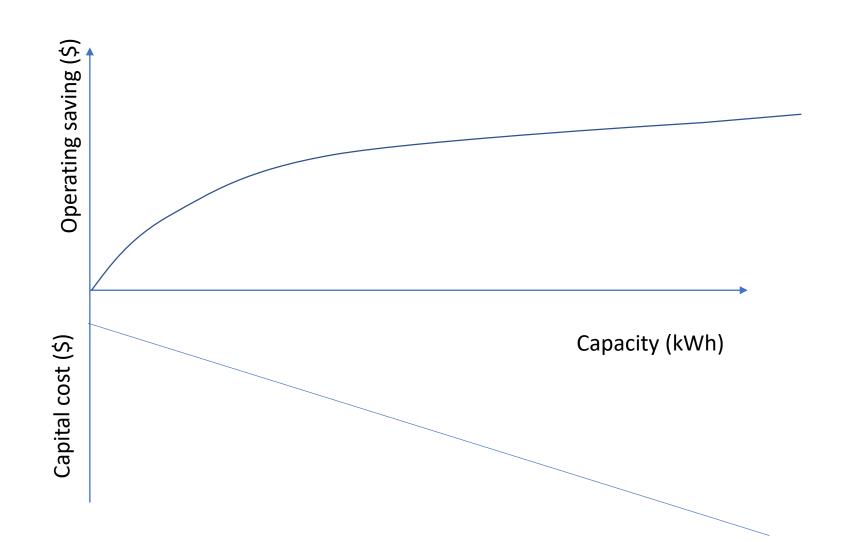
- Arbitrage:
 - charge from cheap energy,
 - discharge to avoid expensive energy
- Up-front cost
 - Does it include battery inverter?
 - \$/kWh (kWh of capacity)
 - Amortised storage cost per kWh delivered over warranted life
 - ~+\$0.25 ~+\$0.90 (plus inverter)
- Energy cost: storage cost + charging cost

Battery is net energy user

- Round-trip efficiency say 85%
- 15% charging losses
- For say 4000kWh charging energy in a year
- 3400kWh delivered energy
- 600kWh lost energy charging battery
 - Comparable to an efficient hot water system

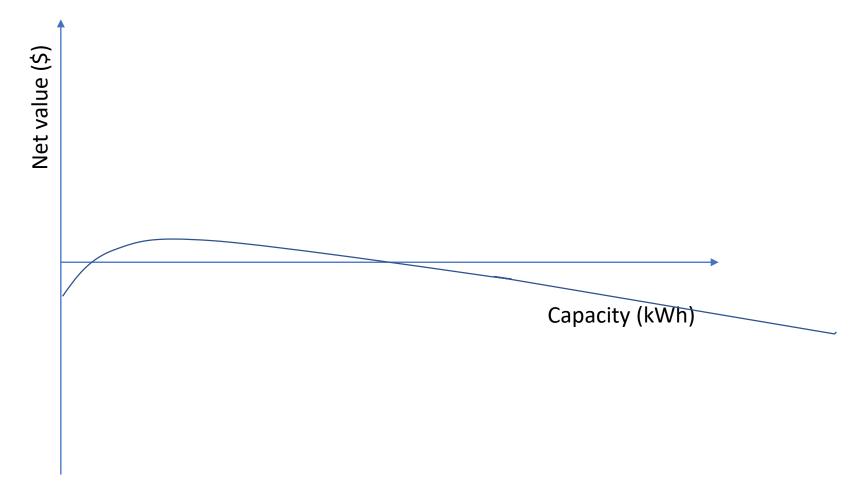
Battery utilisation

- Utilisation proportion of available capacity that actually gets used
- Perfectly utilised battery:
 - Complete charge, followed by
 - Complete discharge
- Storage capacity might not get used because (on any given day):
 - Not enough sun to charge it, and/or
 - Not enough load to use it



Battery utilisation trade off

- Trade off
 - Unused capacity is wasted capital
 - Unavailable capacity means exporting
 - Uncharged capacity means buying from the grid
- Same with hot-water system size
- Small systems (cheaper) will be well utilised but may leave you without enough stored energy

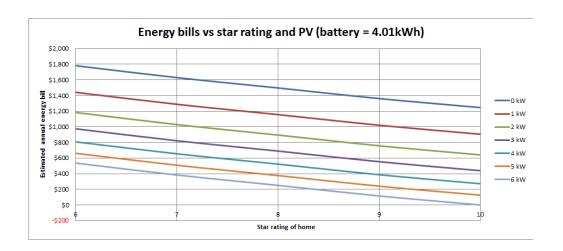

Capacity optimisation – how much is best?

Capacity optimisation

- the goldilocks problem

Battery capacity required?

- What are your goals?
 - Highest net savings?
 - Lowest total grid demand?
 - Least chance of running out of power?
- It's complicated: Depends on grid configuration/reliability, battery cost, demand characteristics, solar resource, grid tariffs, weather, backup generator.


Solar resource

- PV daily output annual avg (Melbourne): 3.5kWh / kWp
- Daily average for worst month: 1.8kWh / kWp (1:1.8)
- Daily average for best month: 4.8kWh / kWhp (1.4:1)
- Winter is more of an outlier than summer
- Cloudy days ~ 0.6 kWh / kWp (1:6 annual daily avg)
- Implication for batteries:
 - In winter when you need it most it's hard to have enough PV capacity to charge your battery.

Modelling the benefits

- 1. My spreadsheet model for all-electric homes
 - https://newenergythinking.com/blog/

PV capacity [kW]	8	
NatHERS star rating	8	KEY INPUTS
Battery usable capacity [kWh]	4.0	
Occupancy (time proportion)	100%	I
Occupancy (people)	4	OTHER INPUTS
Energy usage practice	RELAXED	OTHER INPUTS
Floor area [m2]	134	
Net annual energy bill	\$0	KEY OUTPUT
Net energy positive?	YES	
Savings from PV and battery [per annur	n \$1,485	I
Solar generation [kWh/annum]	10512	
Grid export [kWh/annum]	7762	
Grid import [kWh/annum]	1829	
Gross consumption [kWh/annum]	4428	OUTPUTS
Net supply (I-E) [kWh/annum]	-5932	0011013
Battery avoided import	1164	
Battery losses [kWh/annum]	151	
Well-utilised battery?	NO	
Export rate	73.8%	
Battery utilisation	79.5%	

• 2. ATA's Sunulator model

Batteries and blackouts

- Batteries don't necessarily give blackout protection
- Anti-islanding inverters shut down on grid failure
- Full blackout protection needs:
 - grid isolation relay
 - high-powered battery inverter
- Partial blackout protection needs backup circuit powered from battery inverter (like a UPS)
- Some battery systems include backup. Don't assume
- eg Powerwall's Backup Gateway.

Batteries and the smart grid

- Home perspective: optimal battery operation needs:
 - Smart algorithms
 - Knowledge of consumption patterns
 - Weather/solar data and forecast
 - Ability to sell energy to exploit peak-price events
 - Ability to charge from off-peak when appropriate
 - Ability to divert surplus energy (eg hot-water, pool pump)
- Grid perspective: home batteries useful when:
 - Reducing general demand variability (easy)
 - On-demand source of generation to mitigate peak-price events (hard)
 - On-demand source of stabilisation (hard)
 - Virtual power plants

Smart grid enabler: Reposit Power

- Makes home batteries part of a distributed virtual power plant
- Allows on-demand selling of power to the grid
 - Peak demand events
 - Good return to home owners
- Smart control of charging
- Battery-agnostic
- Australian-made and -owned company

Reposit Storage Savings Case Study: SMA Sunny Boy Storage with Powershop Grid Impact

Reposit Feature	Individual Savings	Accumulated Savings
Reposit replacing the standard battery monitoring	\$600	\$600
Reposit GridCredit joining bonus	\$100	\$700
Reposit GridCredits year 1	\$156	\$856
Reposit smart off peak charging year 1 (Vic average)	\$64	\$920
Reposit GridCredits year 2	\$156	\$1176
Reposit smart off peak charging year 2 (Vic average)	\$64	<u>\$1240</u>

Reposit standard installation cost of \$1200 can be pay for itself in only 2 years.

Reposit improves the payback of the battery and adds more savings over time.

Available Lithium batteries on the market

- LG Chem Resu 10
- SimpliPhi PHI3.4 Smart-Tech
- SunGrow SBP4K8
- Leclanche Apollion Cube
- Soltaro
- GCL E-KwBe 5.6
- Arvio Sirius Capacitor Module
- Delta Hybrid E5
- Sonnenschein @ Home Lithium
- ELMOFO E-Cells ALB52-106
- Akasol neeoQube
- BYD B-Box LV
- Fronius Solar Battery

- PowerPlus Energy LiFE series 48V
- DCS PV 5.0DCS PV 5.0DCS PV 10.0
- SolaX 3.3 SolaX 3.3 SolaX 6.5
- BMZ ESS3.0
- Pylontech US2000B
- Tesla Powerwall 2
- Trinabess Powercube
- SolarWatt MyReserve Matrix
- Hansol AlO 10.8Hansol AlO 10.8Hansol AlO 7.2
- VARTA Pulse 3VARTA Pulse 3VARTA Pulse 6
- Enphase AC Battery

- Magellan HESS
- Sonnenbatterie
- Opal Storage
- Senec.home Li 10
- ZEN Freedom Powerbank FPB16
- SolaX Power Station
- Sunverge SIS
- Alpha-ESS ECO S5

(from solarquotes.com.au)

Other batteries

- Aquious Hybrid Ion
 - Aquion Aspen 48S-2.2
 - Fusion Power Systems Titan-3
- Flow battery
 - Redflow Zcell
- Sodium Nickel Chloride
 - GridEdge Quantum
- Lead
 - Hybrid Home Plus

Concluding remarks

• \$10,000+ is a lot for a system that stores \$3 of electricity at a time

Battery cost reduction is mostly being driven by EVs

Needs to be structural incentives for home batteries

Recommendations

- Who: anyone
 - Explore the possible scenarios with modelling
- Who: economically motivated suburban Melbournian
 - Wait for economics to improve further
 - In the mean time, reduce demand and get (more) solar
- Who: environmentally motivated
 - Get hybrid solar PV with large PV and medium-size battery (5-10kWh)
 - Use Lithium Ion technology
 - Get blackout protection
 - Get Reposit for smart-grid integration

Keep in touch

• I hang out at the group 'My Efficient Electric Home' on Facebook https://www.facebook.com/groups/996387660405677

• Email: richard@newenergythinking.com

